
Spanning traceroutes over modular networks and general scaling degree distributions

Alberto Lovison,1,* Gianmarco Manzini,2 Amos Maritan,3,† Mario Putti,4,‡ and Andrea Rinaldo5,6,§

1Dipartimento di Matematica Pura e Applicata, Università di Padova, I-35121 Padova, Italy
2Istituto di Matematica Applicata e Tecnologie Informatiche, CNR, I-27100 Pavia, Italy

3Dipartimento di Fisica G. Galilei and CNISM, Università di Padova, I-35151 Padova, Italy
4Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Padova, I-35121 Padova, Italy

5Dipartimento IMAGE, Università di Padova, I-35131 Padova, Italy
6Laboratory of Ecohydrology, ECHO/ISTE/ENAC, Faculté ENAC, École Polytechnique Fédérale Lausanne (EPFL),

Lausanne, Switzerland
�Received 11 July 2009; revised manuscript received 5 January 2010; published 11 March 2010�

We analyze the class of networks characterized by modular structure where a sequence of � Erdös-Renyi
random networks of size N�� with random average degrees is joined by links whose structure must remain
immaterial. We find that traceroutes spanning the entire macronetwork exhibit scaling degree distributions
P�k��k−�, where � depends on how the degrees of the joined clusters are distributed. We thus suggest that yet
another mechanism for the dynamic origin of arbitrary power-law degree distributions observed in natural and
artificial networks, many of which belong to the range 2���3, may be found in random processes on
modular networks.
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I. INTRODUCTION

Modularity is a central organizing principle of complex
networks, where the structure of the subdivision into coher-
ent groups over multiple scales reflects functional units remi-
niscent of ecological niches in ecology, modules in bio-
chemical networks, or communities of social networks �1–4�.
Relevant to our purposes, it was shown �5� by exploring a
possible bias in probing the scale-free features of very large
networks that the degree distribution P�k� of a tree spanning
an Erdös-Rényi �ER� random graph follows a power law
P�k��k−� with �=1 regardless of its average degree. Given
the wide range of � values observed in natural and artificial
networks �2,6,7,20�, the extent of possible implications of
the result thus seemed somewhat limited. However, subse-
quent work �8–10� showed that estimates of the scaling ex-
ponents of the degree distribution of scale-free networks
sampled by extracting spanning trees �the so-called tracer-
oute probes� are generally smaller than the actual exponents.
Note that this is true when the probes are more than 1 and the
targets are not the whole set of nodes of the network because
higher degree nodes are more likely to be mapped correctly
than low degree ones. Furthermore, traceroute mapping of
networks is obviously more reliable when the underlying
network is rather sparse �10�. Thus the centrality of the sam-
pling of networks by static or dynamic approaches is evident
�7,9�. Petermann and De Los Rios �9�, in particular, showed
that different generation algorithms may lead to different to-
pological properties, an idea that has been exploited to show
analytically that the observed power-law degree distributions
can rather be an artifact of biases affecting the sampling
techniques.

Overall, studies on modularity of large networks �1�, on
clustering and community structure in ecological and social
systems aiming at extracting their hierarchical organization
�11–17�, or on limit scaling properties of spanning trees of
arbitrarily connected nodes �18� offer broad insight into sev-
eral relevant network phenomena.

Moreover, it was shown that dynamical processes taking
place on networks may sample specific evolving subnet-
works whose topology may not necessarily be the same of
the underlying domain �10,19�. The emerging degree distri-
butions, e.g., studied by mean-field arguments both for
single-source and multiple-source cases and applied to the
specific example of the traceroute exploration of networks,
have been shown to provide a qualitative improvement in the
understanding of dynamical sampling and of the interplay
between dynamics and topology in large networks such as
the internet �19�.

In this paper we derive the degree distribution of spanning
traceroutes extracted from assembled heterogeneous random
graphs organized in a modular structure, aiming in particular
at probing whether the aggregates exhibit topologies en-
dowed with the scale-free characters of the type observed in
natural and artificial networks �2,6,20�. Because we claim
that patchworking of chance-dominated locally homoge-
neous aggregate clusters is indeed a reasonable candidate
mechanism for the generation of very large networks �1�, its
overall properties are deemed relevant. In particular, if the
most relevant processes that take place on the network con-
centrate around a treelike backbone such as a spanning tree
or a traceroute �that is, on a very sparse subset preserving the
connectivity and some relevant features of the global net-
work�, our results suggest how general scale-free characters
of key topological features such as the degree distribution
may naturally emerge.

II. SPANNING TRACEROUTES AND PATCHWORKING
OF RANDOM GRAPHS

We start from the classical random graph model by ER.
Starting with N nodes each of the possible N�N−1� /2 bonds
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is an edge of the graph with probability q, and the average
degree is �k�=q�N−1� �21�. We will refer to the ER random
graph model with N nodes and probability q by G�N ,q�. The
number of links will be denoted by L. The generation of a
breadth-first search �BFS� spanning tree starts from an as-
signed node �the root� and adds to the tree all the available
links that point toward yet unexplored nodes. It is clear that
each spanning tree will have approximately degree k�1�
� k̂�1�=d=q�N−1���1+q�N−1��1−q�0� at the root because
all the nodes of the graph are unexplored. Once the second
node is processed, a neighbor of the root, it may potentially
be connected to each one of the remaining N−1−d nodes
with the same probability q; thus its degree will be approxi-

mately k̂�2�=1+q�N−1−d�=1+q�N−1��1−q�1. At the ith

step, the degree will be estimated by k̂�i�=1+qr�i�, where
r�i� is the approximate number of nodes not yet reached by

the tree, given inductively by r�i�=r�i−1�− �k̂�i−1�−1�.
Thus, for i�2, it follows that

k̂�i� = 1 + q„r�i − 1� − k̂�i − 1� + 1…

= 1 + qr�1��1 − q��i−1� = 1 + q�N − 1��1 − q��i−1�.

It is clear that the sequence 	k̂�i�
 is strictly decreasing from

k̂max= k̂�1�=q�N−1� to k̂min= k̂�N�=1+q�N−1��1−q�N−1

�24�.
It follows that the cumulative histogram of the degrees

(H��k�ªNo.	nodes with degree�k
) is approximated by

the sequence 	(k̂�i� , i) � i=1, . . . ,N
. Indeed, because k�1� is
the degree of the root of the BFS tree, H��k��0 for k

�k�1� and H�(k�1�)=1. Because the sequence 	k̂�i�
 is
strictly decreasing, there should be two nodes with degree
�k�2� and three nodes with degree �k�3� such that

H�(k�i�)� i. By inverting the formula for k̂�i� we obtain

H��k�� î�k�=N+ (1 / ln�1−q�)ln(�k−1� / �k̂min−1�) if k̂min�k

� k̂max, H��k�=N if k� k̂min, and H��k�=0 if k� k̂max.
The degree distribution Pq�k� is estimated as minus the de-

rivative with respect to k of î�k� /N, which is zero outside the

range between the lower and upper cutoffs, k̂min and k̂max,
whereas in the continuous limit one has

Pq�k� �
1

N�ln�1 − q��
1

k − 1
, k̂min � k � k̂max, �1�

which is a power law with exponent of −1. This proof
complements previous ones �5�. The good agreement with
numerical simulations can be observed in Fig. 1.

Patchworking different ER graphs is now analyzed. Spe-
cifically, we generate a modular network by picking a se-
quence q1 , . . . ,q� from a certain probability distribution with
density w�q� in the interval �0,1� and fixing a number of
nodes N��. We generate a sequence of ER graphs
G1 , . . . ,G� such that Gi�G�N ,qi� and refer to these graphs
as the patches or the local communities.

The choice of a fixed graph �community� size N is not
restrictive as it can be shown that a sequence of variably

sized communities can be substituted without affecting the
subsequent results by a constant size sequence through a
suitably tuned probability distribution density w�q�. This
stems from the limit of large N for Eq. �1� which depends
only on the average cluster degree �k�=q�N−1�.

The patchwork GN,�
w�q� is thus obtained by adding a small

number of new random links among nodes belonging to dif-
ferent patches until the resulting network becomes con-
nected. Those new links act as gateways among distinct com-
munities �Fig. 2�. As long as N��, the number of gateways
proves irrelevant. Compared to edges and connections inside
the patches, the gateways are few but crucial to maintain
global connectivity, as shown for instance by small-world
networks whose diameter may decrease significantly through
minor rewiring without affecting the clustering of the whole
aggregate �23�.

III. RESULTS AND DISCUSSION

Trees spanning the whole network propagate inside single
subgraphs as if they were isolated because of the small num-
ber of gateway links. When the spanning process passes
through one of the gateways, the tree generation algorithm
restarts on the next community according to the same rules
valid for individual ER graphs. Because the number of gate-
ways is small, we claim that the histogram of the degrees of
the global spanning tree may be well approximated by the
sum of the histograms of the single spanning trees built over
the isolated communities. As a result, the overall degree
probability distribution P�k� is obtained by averaging the de-
gree distributions of the isolated communities. This is con-
firmed by numerical simulations �see Fig. 4� and holds also
in the limit of N→�, �→� while N /��1. In such a case,
we can estimate exactly the degree distribution of spanning
trees over a patchwork of several ER graphs G�N ,qi�, with
qi�w�q�, as follows:

P�k� =
1

�



i

Pqi
�k� →

�→�
�

0

1

Pq�k�w�q�dq . �2�

From Eqs. �1� and �2� it follows that the behavior of P is
dominated by the small q behavior of w�q�.
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FIG. 1. Sampled degree distribution of a BFS tree �shown here
using logarithmic binning� in an Erdös-Rényi random graph
G�105 ,0.001� compared with the analytical prediction �Eq. �1��.
The sampled degree distribution of G�105 ,0.001� is also shown.
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We now analyze a few relevant cases. We first assume that

w�q� = �C	q−	�1 + h�q�� for 0 � qmin � q � qmax � 1

0 otherwise,
�

where h�q� →
q→0

0 and 	�0. If 	�1 the lower cutoff, qmin,
may also be zero. Otherwise, owing to normalization, the
lower cutoff is strictly positive. The integral is dominated by
the small q behavior of the integrand and in the range kL
�qmin�N−1��k�qmax�N−1��kU. Equation �2� leads to the
following finite-size scaling form �22�:

P�k� � �
k/�N−1�

1 1

N

1

ln
1

1 − q

1

k − 1
w�q�dq

�
1

N

C	

k − 1
�

k/�N−1�

qmax

�q−	−1�dq 
 k−	−1f� k

kU
� , �3�

where the scaling function f�x�
 �1−x	� when 0�x�1 and
zero otherwise. Notice that when x=k /kU�1, f�x��const, a
power-law behavior is recovered �see Fig. 3�. On the other
hand in the range k�kL, Eq. �2� gives

P�k� �
1

k − 1
�

qmin

qmax w�q�

ln
1

1 − q

dq � C̃k−1, �4�

where the k−1 behavior of ER networks is recovered for k
smaller than the smallest average degree of the communities.
Extensive numerical investigation confirms the two separate
regimes and the finite-size effect. In Fig. 4 an example of
patchwork network with 	=1.0 is reported.

The case 	=0 must be treated separately. It corresponds
to the case when w�q� approaches a constant in the small q
limit which has the same scaling behavior as the case of a
uniform w�q��1 / �qmax−qmin�. For k�qmin�N−1� the k−1

trend is unchanged, while for kL�k�kU the degree distribu-
tion is estimated by

P�k� �
C0

Nk
�

k/�N−1�

qmax 1

ln
1

1 − q

dq = k−1f0� k

kU
� �5�

with the scaling function f0�x�
−ln x. Differently with the
previous case where f�x�→const in the small x limit, there
exist logarithmic corrections to the pure power-law behavior.
These corrections are generally expected when the power-
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FIG. 3. Scaling function f̃�k /kU�=kP�k� �Eq. �5�� from numeri-
cal experiments on patchwork networks composed of ten commu-
nities with N=105, 2�105, and 5�105 nodes and w�q��q−1 in the
range qmin=10 /N and qmax=3000 /N. Curves corresponding to dif-
ferent qmax �and thus kU� indeed collapse around a function of k /kU

with qmax�N−1��kU.

(b)

(a)

FIG. 2. �a� BFS spanning trees in Poisson random graphs with N=25 nodes and L=35,70,200 links. The large dot is the root of the tree;
�b� modular network obtained by connecting four ER networks with N=30, L=60,120,180,240 �L=qN�N−1� /2�.
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law exponent becomes 1 since it is the limiting case where
the power-law behavior cannot be extended at arbitrary large
k due to normalization of P�k� �Fig. 5�. The 	�0 case leads
to the same scaling behavior as the 	=0 case.

The logic behind the choice made for w�q� is simply to
provide an ansatz on how w�q� behaves at small q. It may
simply go to a constant, implying 	�0, leading to the uni-
versal behavior P�k��k−1, or it could diverge. Thus the
former case represents a generalization of the nice work done
by Clauset and Moore �5�. In the latter case we have assumed
a power-law divergence at small q. A more general or real-
istic case can be well approximated by an appropriate linear
combination of power laws. Since P�k� is linear in w �see Eq.
�2�� this would lead to P�k� itself being a linear combination
of power laws for which we have an exact analytical expres-
sion.

To further test the analytical predictions with numerical
simulation we have considered the case w�q�=C	
q−	

��1−q�−
 in �qmin ,qmax� and 0 outside. For k�qmin�N−1�,

the degree distribution is given by the exact expression in
terms of the incomplete Euler function B,

P�k� �
1

N

C	


k − 1
�B�qmax;− 	,− 
 + 1�

− B� k

N − 1
;− 	,− 
 + 1�� , �6�

which has the same scaling behavior as in Eqs. �3� and �4�.
Figure 6 compares relevant numerical results.

Note that the proposed merging of heterogeneous ER
graphs recalls the study of the interplay between topological
and dynamical properties of large networks �19�, which is
currently of primary interest in the study of complex sys-
tems. While therein general methods have been proposed to
investigate the topological properties of growing clusters dy-
namically defined by spreading processes, in this paper we
predefine the topologies that are sampled in a sense address-
ing the ontogeny of local networks rather than the sampling
process itself.

Dynamic processes start from a single source to span the
whole network, reaching all nodes only once allowing to
compute analytically or numerically the degree distribution
of the emerging treelike structures because during its evolu-
tion the dynamics samples the local structure of the underly-
ing network. As the sampling rate depends on the dynamical
properties, the degree distribution of the emerging subnet-
work may differ considerably from that of the original net-
work, including generalizations to study sampling induced

by multiple-source processes. The degree distribution P̃�k� of
a subnetwork is related to the degree distribution P�k� of the
underlying one by the relation �19�

P̃�k� = 

�=k

�

P���Q�k��� , �7�

where P��� is the degree distribution that defines the prob-
ability of picking up a node of degree � in the original net-
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FIG. 5. Sampled degree distribution P�k� of 100 BFS trees
�shown using logarithmic binning� extracted from a patchwork net-
work composed of five clusters with N=20 000 nodes and �k�
=50,158,500,1581,5000, i.e., sampled with w�q�
q−	 with 	=0,
and first-order analytical predictions for P�k� �Eqs. �4� and �5��. The
gray symbols represent the P�k� of the patchwork network.
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with 	=1.0. This distribution is indistinguishable from the average
distribution corresponding to BFS trees extracted from the separate
communities. Also shown: first-order approximation �3� for P��k�,
incorporating the finite-size effect and the k−1 regime for k
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tribution density P�k� of the patchwork network.
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work and Q�k ��� is the conditional probability of observing a
node of degree k in the subnetwork if its real degree in the
complete network is �. The parallel with Eq. �2� is evident.
However, within a dynamical framework the sampling prob-
ability would depend on the temporal evolution of the pro-
cess as initially the neighborhood of interfacial nodes is
mainly composed of unreached nodes, whereas in the final
stage of the dynamics most of the nodes have already been
visited. The relevant probabilities are thus replaced by time-
dependent quantities that are defined by the evolution rule of
the dynamical processes itself. In our formalism this is sub-
stituted by static sampling on the local clusters born indepen-
dently and randomly assembled, provided the specification
of the connectivity that provides the overall aggregate nature
remains immaterial.

The present formalism can be extended to study �e.g.,
numerically� the effect of degree-degree correlations or
quenched disorder that has not been considered in this paper.

IV. CONCLUSIONS

We have proposed a mechanism for the dynamic origin
and the structure of very large graphs, possibly heteroge-

neous, probed by traceroutes. We expect that our analysis
will allow a better understanding of the ontogeny of large
networks, as well as on the functional interplay between a
network and the dynamical processes evolving on it.

Implications are foreseen for the design of a new genera-
tion of efficient probing algorithms, say for internet applica-
tions, and toward building accurate network models. It must
be emphasized that in the case studied here, the sampled
network is a tree. However, networks such as internet are not
trees; on the contrary, the mapping projects yield maps with
large clustering coefficients. Our study is limited to spanning
trees, however, which we believe represent an important
case. The many-point correlation functions in any context,
not only in the network field, are important and should be
studied although this is not the focus of the present contri-
bution.
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